Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 15.121
Filtrar
1.
Front Endocrinol (Lausanne) ; 15: 1322731, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562417

RESUMO

Purpose: Telomerase reverse transcriptase (TERT) has been reported in papillary thyroid carcinoma (PTC). This study aimed to investigate the correlation of TERT promoter mutations with clinical and ultrasound (US) features in PTC and to develop a model to predict TERT promoter mutations. Methods: Preoperative US images, postoperative pathological features, and TERT promoter mutation information were evaluated in 365 PTC patients confirmed by surgery. Univariate and multivariate factor analyses were performed to identify risk factors for TERT promoter mutations. A predictive model was established to assess the clinical predictive value. Results: Of the 365 patients with PTC (498 nodules), the number of those with TERT promoter mutations was 67 cases (75 nodules), and the number of those without mutations was 298 cases (423 nodules). The median age was 40 years in the wild-type group and 60 years in the mutant group. Male patients made up 35.82% of the mutant group and 22.82% of the wild-type group. Multivariate analysis revealed that the independent risk factors associated with the occurrence of TERT promoter mutation in PTC were as follows: older age (odds ratio (OR) = 1.07; p = 0.002), maximum diameter of ≥ 10 mm (OR = 3.94; p < 0.0001), unilateral (OR = 4.15; p < 0.0001), multifocal (OR = 7.69; p < 0.0001), adjacent to the thyroid capsule (OR = 1.94; p = 0.044), and accompanied by other benign nodules (OR = 1.94, p = 0.039). A predictive model was established, and the area under the curve (AUC) of the receiver operating characteristic was 0.839. TERT promoter mutations were associated with high-risk US and clinical features compared with the wild-type group. Conclusion: TERT promoter mutations were associated with older ages. They were also found to be multifocal, with a maximum diameter of ≥ 10 mm, unilateral, adjacent to the thyroid capsule, and accompanied by other benign nodules. The predictive model was of high diagnostic value.


Assuntos
Carcinoma Papilar , Telomerase , Neoplasias da Glândula Tireoide , Humanos , Masculino , Adulto , Câncer Papilífero da Tireoide/genética , Neoplasias da Glândula Tireoide/diagnóstico por imagem , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Carcinoma Papilar/diagnóstico por imagem , Carcinoma Papilar/genética , Carcinoma Papilar/patologia , Regiões Promotoras Genéticas/genética , Mutação , Telomerase/genética
3.
Parasitol Res ; 123(4): 179, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38584235

RESUMO

Giardia duodenalis, the protozoan responsible for giardiasis, is a significant contributor to millions of diarrheal diseases worldwide. Despite the availability of treatments for this parasitic infection, therapeutic failures are alarmingly frequent. Thus, there is a clear need to identify new therapeutic targets. Giardia telomeres were previously identified, but our understanding of these structures and the critical role played by Giardia telomerase in maintaining genomic stability and its influence on cellular processes remains limited. In this regard, it is known that all Giardia chromosomes are capped by small telomeres, organized and protected by specific proteins that regulate their functions. To counteract natural telomere shortening and maintain high proliferation, Giardia exhibits constant telomerase activity and employs additional mechanisms, such as the formation of G-quadruplex structures and the involvement of transposable elements linked to telomeric repeats. Thus, this study aims to address the existing knowledge gap by compiling the available information (until 2023) about Giardia telomeres and telomerase, focusing on highlighting the distinctive features within this parasite. Furthermore, the potential feasibility of targeting Giardia telomeres and/or telomerase as an innovative therapeutic strategy is discussed.


Assuntos
Giardia lamblia , Giardíase , Telomerase , Humanos , Telomerase/genética , Telomerase/metabolismo , Giardíase/parasitologia , Giardia/genética , Telômero/genética , Giardia lamblia/genética , Giardia lamblia/metabolismo
4.
Hum Mol Genet ; 33(9): 818-834, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38641551

RESUMO

Telomeres are nucleoprotein structures at the end of chromosomes that maintain their integrity. Mutations in genes coding for proteins involved in telomere protection and elongation produce diseases such as dyskeratosis congenita or idiopathic pulmonary fibrosis known as telomeropathies. These diseases are characterized by premature telomere shortening, increased DNA damage and oxidative stress. Genetic diagnosis of telomeropathy patients has identified mutations in the genes TERT and TERC coding for telomerase components but the functional consequences of many of these mutations still have to be experimentally demonstrated. The activity of twelve TERT and five TERC mutants, five of them identified in Spanish patients, has been analyzed. TERT and TERC mutants were expressed in VA-13 human cells that express low telomerase levels and the activity induced was analyzed. The production of reactive oxygen species, DNA oxidation and TRF2 association at telomeres, DNA damage response and cell apoptosis were determined. Most mutations presented decreased telomerase activity, as compared to wild-type TERT and TERC. In addition, the expression of several TERT and TERC mutants induced oxidative stress, DNA oxidation, DNA damage, decreased recruitment of the shelterin component TRF2 to telomeres and increased apoptosis. These observations might indicate that the increase in DNA damage and oxidative stress observed in cells from telomeropathy patients is dependent on their TERT or TERC mutations. Therefore, analysis of the effect of TERT and TERC mutations of unknown function on DNA damage and oxidative stress could be of great utility to determine the possible pathogenicity of these variants.


Assuntos
Disceratose Congênita , Telomerase , Humanos , Telomerase/genética , Telômero/genética , Telômero/metabolismo , RNA/genética , Mutação , Dano ao DNA/genética , Estresse Oxidativo/genética , Apoptose/genética , DNA/metabolismo
5.
World J Gastroenterol ; 30(9): 1224-1236, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38577190

RESUMO

BACKGROUND: As a critical early event in hepatocellular carcinogenesis, telomerase activation might be a promising and critical biomarker for hepatocellular carcinoma (HCC) patients, and its function in the genesis and treatment of HCC has gained much attention over the past two decades. AIM: To perform a bibliometric analysis to systematically assess the current state of research on HCC-related telomerase. METHODS: The Web of Science Core Collection and PubMed were systematically searched to retrieve publications pertaining to HCC/telomerase limited to "articles" and "reviews" published in English. A total of 873 relevant publications related to HCC and telomerase were identified. We employed the Bibliometrix package in R to extract and analyze the fundamental information of the publications, such as the trends in the publications, citation counts, most prolific or influential writers, and most popular journals; to screen for keywords occurring at high frequency; and to draw collaboration and cluster analysis charts on the basis of coauthorship and co-occurrences. VOSviewer was utilized to compile and visualize the bibliometric data. RESULTS: A surge of 51 publications on HCC/telomerase research occurred in 2016, the most productive year from 1996 to 2023, accompanied by the peak citation count recorded in 2016. Up to December 2023, 35226 citations were made to all publications, an average of 46.6 citations to each paper. The United States received the most citations (n = 13531), followed by China (n = 7427) and Japan (n = 5754). In terms of national cooperation, China presented the highest centrality, its strongest bonds being to the United States and Japan. Among the 20 academic institutions with the most publications, ten came from China and the rest of Asia, though the University of Paris Cité, Public Assistance-Hospitals of Paris, and the National Institute of Health and Medical Research (INSERM) were the most prolific. As for individual contributions, Hisatomi H, Kaneko S, and Ide T were the three most prolific authors. Kaneko S ranked first by H-index, G-index, and overall publication count, while Zucman-Rossi J ranked first in citation count. The five most popular journals were the World Journal of Gastroenterology, Hepatology, Journal of Hepatology, Oncotarget, and Oncogene, while Nature Genetics, Hepatology, and Nature Reviews Disease Primers had the most citations. We extracted 2293 keywords from the publications, 120 of which appeared more than ten times. The most frequent were HCC, telomerase and human telomerase reverse transcriptase (hTERT). Keywords such as mutational landscape, TERT promoter mutations, landscape, risk, and prognosis were among the most common issues in this field in the last three years and may be topics for research in the coming years. CONCLUSION: Our bibliometric analysis provides a comprehensive overview of HCC/telomerase research and insights into promising upcoming research.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Telomerase , Humanos , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/terapia , Oncogenes , Bibliometria
6.
Clin Exp Med ; 24(1): 76, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38607456

RESUMO

The predictive value of allele frequency (AF) of BRAF V600E and TERT mutations in papillary thyroid carcinoma (PTC) remains controversial. We aimed to investigate the AF of BRAF V600E and TERT mutations in intermediate-to-high risk PTC and their association between tumor invasiveness, prognosis, and other mutations. Probe hybridization capture and high-throughput sequencing were used to quantitatively test 40 gene loci in 94 intermediate-to-high recurrence risk PTC patients, combined with clinical characteristics and follow-up for retrospective analysis. BRAF V600E mutation AF was linked to a increased risk of thyroid capsule penetration, recurrence, and concurrent mutations. Concurrent mutations could lead to a worse prognosis and increased invasiveness. TERT promoter mutation frequently accompanied other mutations and resulted in a poorer prognosis. However, there was no clear association between the TERT mutation AF and tumor invasiveness or recurrence. The sensitivity and specificity of predicting recurrence in intermediate-to-high risk PTC with BRAF V600E mutation AF > 28.2% were 60 and 80%. Although genetic alterations in PTC can differ among different ethnicities, the AF of BRAF V600E and TERT mutations may be similar. The AF of BRAF V600E has the potential to be a novel indicator in predicting PTC invasiveness and prognosis.


Assuntos
Telomerase , Neoplasias da Glândula Tireoide , Humanos , Câncer Papilífero da Tireoide/genética , Estudos Retrospectivos , Proteínas Proto-Oncogênicas B-raf/genética , Mutação , Frequência do Gene , Neoplasias da Glândula Tireoide/genética , Telomerase/genética
7.
J Biochem Mol Toxicol ; 38(4): e23689, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38613465

RESUMO

Renal cell carcinoma (RCC) is the most common kidney cancer with high mortality rate. Pazopanib has been approved for the treatment of RCC. However, the underlying mechanism is not clear. Here, we report a novel finding by showing that treatment with Pazopanib could promote cellular senescence of the human RCC cell line ACHN. Cells were stimulated with 5, 10, and 20 µM Pazopanib, respectively. Cellular senescence was measured using senescence-associated ß-galactosidase (SA-ß-Gal) staining. Western blot analysis and real-time polymerase chain reaction were used to measure the mRNA and protein expression of nuclear factor E2-related factor 2 (Nrf2), γH2AX, human telomerase reverse transcriptase (hTERT), telomeric repeat binding factor 2 (TERF2), p53 and plasminogen activator inhibitor (PAI). First, we found that exposure to Pazopanib reduced the cell viability of ACHN cells. Additionally, Pazopanib induced oxidative stress  by increasing the production of reactive oxygen species, reducing the levels of glutathione peroxidase, and promoting nuclear translocation of Nrf2. Interestingly, Pazopanib exposure resulted in DNA damage by increasing the expression of γH2AX. Importantly, Pazopanib increased cellular senescence and reduced telomerase activity. Pazopanib also reduced the gene expression of hTERT but increased the gene expression of TERF2. Correspondingly, we found that Pazopanib increased the expression of p53 and PAI at both the mRNA and protein levels. To elucidate the underlying mechanism, the expression of Nrf2 was knocked down by transduction with Ad- Nrf2 shRNA. Results indicate that silencing of Nrf2 in ACHN cells abolished the effects of Pazopanib in stimulating cellular senescence and reducing telomerase activity. Consistently, knockdown of Nrf2 restored the expression of p53 and PAI in ACHN cells. Based on these results, we explored a novel mechanism whereby which Pazopanib displays a cytotoxicity effect in RCC cells through promoting cellular senescence mediated by Nrf2.


Assuntos
Carcinoma de Células Renais , Indazóis , Neoplasias Renais , Pirimidinas , Sulfonamidas , Telomerase , Humanos , Carcinoma de Células Renais/tratamento farmacológico , Fator 2 Relacionado a NF-E2 , Telomerase/genética , Proteína Supressora de Tumor p53/genética , Neoplasias Renais/tratamento farmacológico , RNA Mensageiro
8.
Elife ; 122024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656297

RESUMO

Telomeres, which are chromosomal end structures, play a crucial role in maintaining genome stability and integrity in eukaryotes. In the baker's yeast Saccharomyces cerevisiae, the X- and Y'-elements are subtelomeric repetitive sequences found in all 32 and 17 telomeres, respectively. While the Y'-elements serve as a backup for telomere functions in cells lacking telomerase, the function of the X-elements remains unclear. This study utilized the S. cerevisiae strain SY12, which has three chromosomes and six telomeres, to investigate the role of X-elements (as well as Y'-elements) in telomere maintenance. Deletion of Y'-elements (SY12YΔ), X-elements (SY12XYΔ+Y), or both X- and Y'-elements (SY12XYΔ) did not impact the length of the terminal TG1-3 tracks or telomere silencing. However, inactivation of telomerase in SY12YΔ, SY12XYΔ+Y, and SY12XYΔ cells resulted in cellular senescence and the generation of survivors. These survivors either maintained their telomeres through homologous recombination-dependent TG1-3 track elongation or underwent microhomology-mediated intra-chromosomal end-to-end joining. Our findings indicate the non-essential role of subtelomeric X- and Y'-elements in telomere regulation in both telomerase-proficient and telomerase-null cells and suggest that these elements may represent remnants of S. cerevisiae genome evolution. Furthermore, strains with fewer or no subtelomeric elements exhibit more concise telomere structures and offer potential models for future studies in telomere biology.


Assuntos
Sequências Repetitivas de Ácido Nucleico , Saccharomyces cerevisiae , Telomerase , Telômero , Saccharomyces cerevisiae/genética , Telômero/metabolismo , Telômero/genética , Sequências Repetitivas de Ácido Nucleico/genética , Telomerase/genética , Telomerase/metabolismo , Homeostase do Telômero , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Deleção de Sequência
9.
Cell Mol Life Sci ; 81(1): 196, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658440

RESUMO

Telomeres as the protective ends of linear chromosomes, are synthesized by the enzyme telomerase (TERT). Critically short telomeres essentially contribute to aging-related diseases and are associated with a broad spectrum of disorders known as telomeropathies. In cardiomyocytes, telomere length is strongly correlated with cardiomyopathies but it remains ambiguous whether short telomeres are the cause or the result of the disease. In this study, we employed an inducible CRISPRi human induced pluripotent stem cell (hiPSC) line to silence TERT expression enabling the generation of hiPSCs and hiPSC-derived cardiomyocytes with long and short telomeres. Reduced telomerase activity and shorter telomere lengths of hiPSCs induced global transcriptomic changes associated with cardiac developmental pathways. Consequently, the differentiation potential towards cardiomyocytes was strongly impaired and single cell RNA sequencing revealed a shift towards a more smooth muscle cell like identity in the cells with the shortest telomeres. Poor cardiomyocyte function and increased sensitivity to stress directly correlated with the extent of telomere shortening. Collectively our data demonstrates a TERT dependent cardiomyogenic differentiation defect, highlighting the CRISPRi TERT hiPSCs model as a powerful platform to study the mechanisms and consequences of short telomeres in the heart and also in the context of telomeropathies.


Assuntos
Diferenciação Celular , Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Telomerase , Telômero , Telomerase/metabolismo , Telomerase/genética , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Telômero/metabolismo , Encurtamento do Telômero , Linhagem Celular
10.
Anal Chim Acta ; 1299: 342420, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38499416

RESUMO

BACKGROUND: Telomerase is considered a biomarker for the early diagnosis and clinical treatment of cancer. The rapid and sensitive detection of telomerase activity is crucial to biological research, clinical diagnosis, and drug development. However, the main obstacles facing the current telomerase activity assay are the cumbersome and time-consuming procedure, the easy degradation of the telomerase RNA template and the need for additional proteases. Therefore, it is necessary to construct a new method for the detection of telomerase activity with easy steps, efficient reaction and strong anti-interference ability. RESULTS: Herein, an efficient, enzyme-free, economical, sensitive, fluorometric detection method for telomerase activity in one-step, named triggered-DNA (T-DNA) nanomachine, was created based on target-triggered DNAzyme-cleavage activity and catalytic molecular beacon (CMB). Telomerase served as a switch and extended few numbers of (TTAGGG)n repeat sequences to initiate the signal amplification in the T-DNA nanomachine, resulting in a strong fluorescent signal. The reaction was a one-step method with a shortened time of 1 h and a constant temperature of 37 °C, without the addition of any protease. It also sensitively distinguished telomerase activity in various cell lines. The T-DNA nanomachine offered a detection limit of 12 HeLa cells µL-1, 9 SK-Hep-1 cells µL-1 and 3 HuH-7 cells µL-1 with a linear correlation detection range of 0.39 × 102-6.25 × 102 HeLa cells µL-1 for telomerase activity. SIGNIFICANCE: In conclusion, our study demonstrated that the triggered-DNA nanomachine fulfills the requirements for rapid detection of telomerase activity in one-step under isothermal and enzyme-free conditions with excellent specificity, and its simple and stable structure makes it ideal for complex systems. These findings indicated the application prospect of DNA nanomachines in clinical diagnostics and provided new insights into the field of DNA nanomachine-based bioanalysis.


Assuntos
Técnicas Biossensoriais , DNA Catalítico , Telomerase , Humanos , Células HeLa , Telomerase/análise , DNA/química , DNA Catalítico/química , Técnicas Biossensoriais/métodos , Limite de Detecção
11.
Dis Model Mech ; 17(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38441152

RESUMO

Telomere length, unlike most genetic traits, is epigenetic, in the sense that it is not fully coded by the genome. Telomeres vary in length and randomly assort to the progeny leaving some individuals with longer and others with shorter telomeres. Telomerase activity counteracts this by extending telomeres in the germline and during embryogenesis but sizeable variances remain in telomere length. This effect is exacerbated by the absence of fully active telomerase. Telomerase heterozygous animals (tert+/-) have reduced telomerase activity and their telomeres fail to be elongated to wild-type average length, meaning that - with every generation - they decrease. After a given number of successive generations of telomerase-insufficient crosses, telomeres become critically short and cause organismal defects that, in humans, are known as telomere biology disorders. Importantly, these defects also occur in wild-type (tert+/+) animals derived from such tert+/- incrosses. Despite these tert+/+ animals being proficient for telomerase, they have shorter than average telomere length and, although milder, develop phenotypes that are similar to those of telomerase mutants. Here, we discuss the impact of this phenomenon on human pathologies associated with telomere length, provide a brief overview of telomere biology across species and propose specific measures for working with telomerase-deficient zebrafish.


Assuntos
Telomerase , Animais , Humanos , Telomerase/genética , Peixe-Zebra/genética , Fenótipo , Telômero/genética , Epigênese Genética
12.
Anal Chem ; 96(14): 5527-5536, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38483815

RESUMO

Dynamic tracing of intracellular telomerase activity plays a crucial role in cancer cell recognition and correspondingly in earlier cancer diagnosis and personalized precision therapy. However, due to the complexity of the required reaction system and insufficient loading of reaction components into cells, achieving a high-fidelity determination of telomerase activity is still a challenge. Herein, an Aptamer-Liposome mediated Telomerase activated poly-Molecular beacon Arborescent Nanoassembly(ALTMAN) approach was described for direct high-fidelity visualization of telomerase activity. Briefly, intracellular telomerase activates molecular beacons, causing their hairpin structures to unfold and produce fluorescent signals. Furthermore, multiple molecular beacons can self-assemble, forming arborescent nanostructures and leading to exponential amplification of fluorescent signals. Integrating the enzyme-free isothermal signal amplification successfully increased the sensitivity and reduced interference by leveraging the skillful design of the molecular beacon and the extension of the telomerase-activated TTAGGG repeat sequence. The proposed approach enabled ultrasensitive visualization of activated telomerase exclusively with a prominent detection limit of 2 cells·µL-1 and realized real-time imaging of telomerase activity in living cancer cells including blood samples from breast cancer patients and urine samples from bladder cancer patients. This approach opens an avenue for establishing a telomerase activity determination and in situ monitoring technique that can facilitate both telomerase fundamental biological studies and cancer diagnostics.


Assuntos
Nanoestruturas , Células Neoplásicas Circulantes , Telomerase , Humanos , Telomerase/metabolismo , Corantes Fluorescentes/química , Nanoestruturas/química , Células HeLa
13.
In Vitro Cell Dev Biol Anim ; 60(3): 236-248, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38502372

RESUMO

The epidermis is largely composed of keratinocytes (KCs), and the proliferation and differentiation of KCs from the stratum basale to the stratum corneum is the cellular hierarchy present in the epidermis. In this study, we explore the differentiation abilities of human hematopoietic stem cells (HSCs) into KCs. Cultured HSCs positive for CD34, CD45, and CD133 with prominent telomerase activity were induced with keratinocyte differentiation medium (KDM), which is composed of bovine pituitary extract (BPE), epidermal growth factor (EGF), insulin, hydrocortisone, epinephrine, transferrin, calcium chloride (CaCl2), bone morphogenetic protein 4 (BMP4), and retinoic acid (RA). Differentiation was monitored through the expression of cytokeratin markers K5 (keratin 5), K14 (keratin 14), K10 (keratin 10), K1 (keratin 1), transglutaminase 1 (TGM1), involucrin (IVL), and filaggrin (FLG) on day 0 (D0), day 6 (D6), day 11 (D11), day 18 (D18), day 24 (D24), and day 30 (D30) using immunocytochemistry, fluorescence microscopy, flow cytometry, qPCR, and Western blotting. The results revealed the expression of K5 and K14 genes in D6 cells (early keratinocytes), K10 and K1 genes in D11-D18 cells (mature keratinocytes) with active telomerase enzyme, and FLG, IVL, and TGM1 in D18-D24 cells (terminal keratinocytes), and by D30, the KCs were completely enucleated similar to cornified matrix. This method of differentiation of HSCs to KCs explains the cellular order exists in the normal epidermis and opens the possibility of exploring the use of human HSCs in the epidermal differentiation.


Assuntos
Telomerase , Humanos , Animais , Bovinos , Telomerase/genética , Telomerase/metabolismo , Queratinócitos/metabolismo , Epiderme/metabolismo , Células Epidérmicas/metabolismo , Queratinas/metabolismo , Células Cultivadas , Células-Tronco Hematopoéticas/metabolismo , Diferenciação Celular
14.
Eur J Cancer ; 202: 113973, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38447379

RESUMO

PURPOSE: The NIPU-trial investigates the effect of adding the telomerase vaccine UV1 to treatment with ipilimumab and nivolumab for patients with pleural mesothelioma (PM). METHODS: In this phase 2 open-label trial, patients with PM progressing after first-line chemotherapy were randomised to receive ipilimumab and nivolumab alone (arm B) or combined with UV1 (arm A). The primary endpoint was progression-free survival (PFS) as determined by BICR. It was estimated that 69 PFS events were needed to detect a hazard ratio (HR) of 0.60 with 80% power and a one-sided alpha level of 0.10. RESULTS: 118 patients were randomised. The median PFS determined by blinded independent central review (BICR) was 4.2 months (95%CI 2.9-9.8) in arm A and 4.7 months (95%CI 3.9-7.0) in arm B (HR 1.01, 80%CI 0.75-1.36 P = 0.979), after a median follow-up of 12.5 months (95%CI 9.7-15.6). The investigator-determined median PFS was 4.3 months (95%CI 3.0-6.8) in arm A and 2.9 months (95%CI 2.4-5.5) in arm B (HR 0.60, 80%CI 0.45-0.81 P = 0.025). Confirmed objective response rate (ORR) by BICR was 31% in arm A and 16% in arm B (odds ratio 2.44 80%CI 1.35-4.49 P = 0.056). After a median follow-up time of 17.3 months (95%CI 15.8-22.9), the OS was 15.4 months (95%CI 11.1-22.6) in arm A and 11.1 months (95%CI 8.8-18.1) in arm B, (HR 0.73, 80%CI 0.53-1.0, P = 0.197). CONCLUSION: The primary endpoint was not met. Predefined analyses of response rates are in favour of adding the vaccine.


Assuntos
Mesotelioma Maligno , Mesotelioma , Neoplasias Pleurais , Telomerase , Humanos , Nivolumabe/efeitos adversos , Ipilimumab/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Mesotelioma Maligno/tratamento farmacológico , Mesotelioma/tratamento farmacológico , Neoplasias Pleurais/tratamento farmacológico , Neoplasias Pleurais/etiologia
15.
Biochemistry ; 63(7): 827-842, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38481135

RESUMO

Telomeres are specialized structures, found at the ends of linear chromosomes in eukaryotic cells, that play a crucial role in maintaining the stability and integrity of genomes. They are composed of repetitive DNA sequences, ssDNA overhangs, and several associated proteins. The length of telomeres is linked to cellular aging in humans, and deficiencies in their maintenance are associated with various diseases. Key structural motifs at the telomeres serve to protect vulnerable chromosomal ends. Telomeric DNA also has the ability to form diverse complex DNA higher-order structures, including T-loops, D-loops, R-loops, G-loops, G-quadruplexes, and i-motifs, in the complementary C-rich strand. While many essential proteins at telomeres have been identified, the intricacies of their interactions and structural details are still not fully understood. This Perspective highlights recent advancements in comprehending the structures associated with human telomeres. It emphasizes the significance of telomeres, explores various telomeric structural motifs, and delves into the structural biology surrounding telomeres and telomerase. Furthermore, telomeric loops, their topologies, and the associated proteins that contribute to the safeguarding of telomeres are discussed.


Assuntos
Quadruplex G , Telomerase , Humanos , Telômero/genética , Telômero/metabolismo , DNA/metabolismo , DNA de Cadeia Simples , Telomerase/genética , Telomerase/metabolismo
16.
Sci Rep ; 14(1): 5382, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443436

RESUMO

Telomerase activity is restricted in humans and telomere attrition occurs in several tissues accompanying natural aging. Critically short telomeres trigger DNA damage responses and activate p53 which leads to apoptosis or replicative senescence. These processes reduce cell proliferation and disrupt tissue homeostasis, thus contributing to systemic aging. Similarly, zebrafish have restricted telomerase expression, and telomeres shorten to critical length during their lifespan. Telomerase-deficient zebrafish (tert -/-) is a premature model of aging that anticipates aging phenotypes due to early telomere shortening. tert -/- zebrafish have impaired cell proliferation, accumulation of DNA damage markers and p53 response. These cellular defects lead to disruption of tissue homeostasis, resulting in premature infertility, gastrointestinal atrophy, sarcopenia and kyphosis. Such consequences contribute to its premature death. Here we reveal a genetic interdependence between tp53 and telomerase function. Mutation of tp53 abrogates premature aging of tert -/- zebrafish, prolonging male fertility and lifespan. However, it does not fully rescue healthspan. tp53mut tert -/- zebrafish retain high levels of inflammation and increased spontaneous cancer incidence. Conversely, loss of telomerase prolongs the lifespan of tp53mut single mutants. Lack of telomerase reduces two-fold the cancer incidence in double mutants and increases lifetime survival. Thus, we observe a reciprocal rescue of tp53mut and tert -/- that ameliorates lifespan but not spontaneous cancer incidence of tp53mut, likely due to higher levels of inflammation.


Assuntos
Neoplasias , Telomerase , Humanos , Animais , Masculino , Longevidade/genética , Peixe-Zebra/genética , Telomerase/genética , Incidência , Proteína Supressora de Tumor p53/genética , Inflamação , Neoplasias/genética
17.
Biochem Pharmacol ; 222: 116109, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38458330

RESUMO

Angiotensin (Ang)-(1-7) stimulates vasoprotective functions of diabetic (DB) CD34+ hematopoietic stem/progenitor cells partly by decreasing reactive oxygen species (ROS), increasing nitric oxide (NO) levels and decreasing TGFß1 secretion. Telomerase reverse transcriptase (TERT) translocates to mitochondria and regulates ROS generation. Alternative splicing of TERT results in variants α-, ß- and α-ß-TERT, which may oppose functions of full-length (FL) TERT. This study tested if the protective functions of Ang-(1-7) or TGFß1-silencing are mediated by mitoTERT and that diabetes decreases FL-TERT expression by inducing splicing. CD34+ cells were isolated from the peripheral blood mononuclear cells of nondiabetic (ND, n = 68) or DB (n = 74) subjects. NO and mitoROS levels were evaluated by flow cytometry. TERT splice variants and mitoDNA-lesions were characterized by qPCR. TRAP assay was used for telomerase activity. Decoy peptide was used to block mitochondrial translocation (mitoXTERT). TERT inhibitor or mitoXTERT prevented the effects of Ang-(1-7) on NO or mitoROS levels in DB-CD34+ cells. FL-TERT expression and telomerase activity were lower and mitoDNA-lesions were higher in DB cells compared to ND and were reversed by Ang-(1-7) or TGFß1-silencing. The prevalence of TERT splice variants, with predominant ß-TERT expression, was higher and the expression of FL-TERT was lower in DB cells (n = 25) compared to ND (n = 30). Ang-(1-7) or TGFß1-silencing decreased TERT-splicing and increased FL-TERT. Blocking of ß-splicing increased FL-TERT and protected mitoDNA in DB-cells. The findings suggest that diabetes induces TERT-splicing in CD34+ cells and that ß-TERT splice variant largely contributes to the mitoDNA oxidative damage.


Assuntos
Angiotensina I , Diabetes Mellitus , Fragmentos de Peptídeos , Telomerase , Humanos , Telomerase/genética , Telomerase/metabolismo , Telomerase/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Leucócitos Mononucleares , Mitocôndrias/metabolismo , Diabetes Mellitus/metabolismo
18.
EMBO Rep ; 25(4): 1734-1751, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38480846

RESUMO

Pif1 family helicases are multifunctional proteins conserved in eukaryotes, from yeast to humans. They are important for the genome maintenance in both nuclei and mitochondria, where they have been implicated in Okazaki fragment processing, replication fork progression and termination, telomerase regulation and DNA repair. While the Pif1 helicase activity is readily detectable on naked nucleic acids in vitro, the in vivo functions rely on recruitment to DNA. We identify the single-stranded DNA binding protein complex RPA as the major recruiter of Pif1 in budding yeast, in addition to the previously reported Pif1-PCNA interaction. The two modes of the Pif1 recruitment act independently during telomerase inhibition, as the mutations in the Pif1 motifs disrupting either of the recruitment pathways act additively. In contrast, both recruitment mechanisms are essential for the replication-related roles of Pif1 at conventional forks and during the repair by break-induced replication. We propose a molecular model where RPA and PCNA provide a double anchoring of Pif1 at replication forks, which is essential for the Pif1 functions related to the fork movement.


Assuntos
Proteínas de Saccharomyces cerevisiae , Telomerase , Humanos , Replicação do DNA/genética , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Telomerase/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , DNA/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
19.
Aging (Albany NY) ; 16(6): 5618-5633, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499392

RESUMO

The telomerase reverse transcriptase promoter (TERTp) is frequently mutated in gliomas. This study sought to identify immune biomarkers of gliomas with TERTp mutations. Data from TCGA were used to identify and validate survival-associated gene signatures, and immune and stromal scores were calculated using the ESTIMATE algorithm. High stromal or immune scores in patients with TERTp-mutant gliomas correlated with shorter overall survival compared to cases with low stromal or immune scores. Among TERTp-mutant gliomas with both high immune and high stromal scores, 213 commonly shared DEGs were identified. Among 71 interacting DEGs representing candidate hub genes in a PPI network, HOXC6, WT1, CD70, and OTP showed significant ability in establishing subgroups of high- and low-risk patients. A risk model based on these 4 genes showed strong prognostic potential for gliomas with mutated TERTp, but was inapplicable for TERTp-wild-type gliomas. TERTp-mutant gliomas with high-risk scores displayed a greater percentage of naïve B cells, plasma cells, naïve CD4 T cells, and activated mast cells than low-risk score gliomas. TIDE analysis indicated that immune checkpoint blockade (ICB) therapy may benefit glioma patients with TERTp mutations. The present risk model can help predict prognosis of glioma patients with TERTp mutations and aid ICB treatment options.


Assuntos
Neoplasias Encefálicas , Glioma , Telomerase , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Mutação , Glioma/tratamento farmacológico , Glioma/genética , Prognóstico , Telomerase/genética
20.
Exp Biol Med (Maywood) ; 249: 10021, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38463391

RESUMO

The presence of inhibitory immune cells and difficulty in generating activated effector T cells remain obstacles to development of effective cancer vaccines. We designed a vaccine regimen combining human telomerase reverse transcriptase (hTERT) peptides with concomitant therapies targeting regulatory T cells (Tregs) and cyclooxygenase-2 (COX2)-mediated immunosuppression. This Phase 1 trial combined an hTERT-derived 7-peptide library, selected to ensure presentation by both HLA class-I and class-II in 90% of patients, with oral low-dose cyclophosphamide (to modulate Tregs) and the COX2 inhibitor celecoxib. Adjuvants were Montanide and topical TLR-7 agonist, to optimise antigen presentation. The primary objective was determination of the safety and tolerability of this combination therapy, with anti-cancer activity, immune response and detection of antigen-specific T cells as additional endpoints. Twenty-nine patients with advanced solid tumours were treated. All were multiply-pretreated, and the majority had either colorectal or prostate cancer. The most common adverse events were injection-site reactions, fatigue and nausea. Median progression-free survival was 9 weeks, with no complete or partial responses, but 24% remained progression-free for ≥6 months. Immunophenotyping showed post-vaccination expansion of CD4+ and CD8+ T cells with effector phenotypes. The in vitro re-challenge of T cells with hTERT peptides, TCR sequencing, and TCR similarity index analysis demonstrated the expansion following vaccination of oligoclonal T cells with specificity for hTERT. However, a population of exhausted PD-1+ cytotoxic T cells was also expanded in vaccinated patients. This vaccine combination regimen was safe and associated with antigen-specific immunological responses. Clinical activity could be improved in future by combination with anti-PD1 checkpoint inhibition to address the emergence of an exhausted T cell population.


Assuntos
Vacinas Anticâncer , Neoplasias da Próstata , Telomerase , Masculino , Humanos , Linfócitos T CD8-Positivos , Telomerase/genética , Telomerase/metabolismo , Vacinação , Peptídeos , Vacinas Anticâncer/efeitos adversos , Receptores de Antígenos de Linfócitos T
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...